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A B S T R A C T

Multi-feature fusion has achieved gratifying performance in image retrieval. However, some
existing fusion mechanisms would unfortunately make the result worse than expected due
to the domain and visual diversity of images. As a result, a burning problem for applying
feature fusion mechanism is how to figure out and improve the complementarity of multi-
level heterogeneous features. To this end, this paper proposes an adaptive multi-feature fusion
method via cross-entropy normalization for effective image retrieval. First, various low-level
features (e.g., SIFT) and high-level semantic features based on deep learning are extracted.
Under each level of feature representation, the initial similarity scores of the query image
w.r.t. the target dataset are calculated. Second, we use an independent reference dataset to
approximate the tail of the attained initial similarity score ranking curve by cross-entropy
normalization. Then the area under the ranking curve is calculated as the indicator of the merit
of corresponding feature (i.e., a smaller area indicates a more suitable feature.). Finally, fusion
weights of each feature are assigned adaptively by the statistically elaborated areas. Extensive
experiments on three public benchmark datasets have demonstrated that the proposed method
can achieve superior performance compared with the existing methods, improving the metrics
mAP by relatively 1.04% (for Holidays), 1.22% (for Oxf5k) and the N-S by relatively 0.04 (for
UKbench), respectively.

. Introduction

Content-based image retrieval (CBIR) has been widely studied in computer vision tasks, which mainly leverages global features,
ocal features and convolution features of images to explore retrieval task, and has achieved gratifying results. Although many efforts
ave been spent in this field, the burning challenging problem of CBIR, known as the ‘semantic gap’, still exists between low-level
eatures captured by machines and high-level semantic features perceived by humans. Gkelios, Sophokleous, Plakias, Boutalis, and
hatzichristofis (2021), Zheng, Yang, and Tian (2018) comprehensively introduced the development of image retrieval in the past
wo decades. On the hand, the methods based on low-level features of SIFT mostly depend on the Bag-of-Word (BoW). As surveyed
n Refs. Chen, Hu, and Shen (2009), Elsayad, Martinet, Urruty, and Djeraba (2010), Xia et al. (2018), Zhu, Jin, Zheng, and Feng
2014), Zhu et al. (2021), such methods generally use local feature descriptors such as SIFT (Xie, Tian, & Zhang, 2014; Zheng
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et al., 2018) and establish a corresponding feature codebook database. Compared with other low-level features, the BoW model
can make a better scheme; however, its retrieval efficiency is greatly reduced due to the huge computational complexity. On the
other hand, high-level semantic features, usually extracted by the popular Convolutional Neural Network (CNN), are widely used
as feature descriptors recently (Gkelios et al., 2021; Ma, Zhou, Qin, Xiang et al., 2022; Qiao, Wu, & Jin, 2021; Zhan, Zhang, Hu,
& Sheng, 2021). In general, the deep CNN model can achieve superior results in image classification, clustering, retrieval and
object detection (Huang, Liu, Pleiss, Van Der Maaten, & Weinberger, 2019; Ma, Zhou, Qin, Zhou, & Cai, 2022), because it can
approach human perception to some extent via a series of hidden layer operations to improve feature representations. Therefore,
the high-level semantic features are believed to yield higher accuracy than their low-level counterparts. Among the typical CNN
model (e.g., AlexNet, InceptionV3, VGG19), while DenseNet121 is featured with extremely high feature utilization rate, stronger
feature expression ability, fewer parameters and less computation complexity (Huang et al., 2019).

Both types of features can help to attain decent performance (Zheng et al., 2018), but they are considered independently with
he joint benefit neglected, leaving a large room for improvement. Given this, researchers have proposed some effective fusion
echanisms, such as feature-level fusion (Abdi, Shamsuddin, Hasan, & Piran, 2019; Douze, Ramisa, & Schmid, 2011; Li, Yang,
ang, Sun, & Xu, 2021; Liu, Guo, Wu, & Cai, 2017; Wu, Li, Xu, & Yang, 2021; Zhao, Lu, & Wang, 2017), index-level fusion (Zhang,
ang, Wang, Lin, & Tian, 2015; Zhang et al., 2019; Zheng, Wang, Liu, & Tian, 2014; Zheng, Wang, & Tian, 2014), graph-level

usion (Deng, Ji, Liu, Tao, & Gao, 2013; Lao et al., 2021; Liu et al., 2020; Zhang, Yang, Cour, Yu, & Metaxas, 2014), similarity score-
evel fusion (Zhang et al., 2018; Zheng et al., 2015) and rank-level fusion (Liu, Wang, Zheng, & Tian, 2017; Valem & Pedronette,
020a, 2020b). These fusion methods have greatly promoted the development of image retrieval technology. However, it is hard to
alance the relationship between weight distribution and complementarity of heterogeneous features, which results in a performance
orse than expected (Zheng, Wang, Liu et al., 2014). In some cases, there is no use of high-level semantic features (Zhao et al.,
017) or a large amount of redundancy in high-level semantic features, which cannot adequately represent image information (Zhang
t al., 2014). As a result, the complementarity of heterogeneous features cannot be fully utilized, wherein the inappropriate fusion
echanism is the essence.

To tackle the above issues, our work mainly considers two aspects: on the one hand, all features are treated equally, and the
ailure of identifying better features, which may under-utilize features’ discriminative ability. On the other hand, bad features
hat escape being punished may lead to unexpected consequences, namely, accuracy gets even lower after fusion (Zhang et al.,
014; Zheng, Wang, Liu et al., 2014). Thus our work proposes an adaptive multi-feature late fusion via cross-entropy normalization
or effective image retrieval. The main idea of our solution is to adaptively identify the effectiveness of different features based
n the similarity it shares with each query, so that those ‘good’ features are endowed with larger weights for providing greater
ontributions, while the ‘bad’ features are punished, thus attaining differential fusion of heterogeneous features. The weight
llocation of each feature fusion is adaptive for each input query image, in this way, ‘good’ feature for a specific query is assigned a
arger weight. Specifically, first various low-level features and high-level semantic features with higher feature utilization and low
edundancy are extracted, meanwhile we calculate the similarity between a query and each image in the target datasets (Holidays,
Kbench and Oxf5k) under several feature representations, and obtain a similarity curve for each representation (known as target
istribution). Then, we perform another matching between the query and a reference dataset (Flickr1M & Flickr343Places), which
s considerably large, so that to obtain reference curves for each representation (known as reference distribution), too. Next, cross-
ntropy normalization is used to approximate the target distribution with the reference distribution, giving us a normalized similarity
urve for each representation. By doing this, we assess the validity of a representation’s curve. Namely, better matching between
he target distribution and the reference distribution indicates the original curve is acceptable on a larger dataset. After that, the
rea under the normalized similarity curve is denoted as the merit of the representation, which is further used as its weight during
usion. In this way, adaptivity is achieved by evaluating the representation with its generalization to different (reference) datasets.
he main contributions of this paper are listed as follows:

• We propose an efficient multi-feature image retrieval method, which extracts four types of low-level features as well as
high-level semantic features of five pre-trained CNN models. Our attempt to adopt such a wide exploitation of multi-feature
is believed to represent visual characteristics under different image retrieval contexts, thus bringing insights for leveraging
ensemble knowledge into retrieval.

• We propose an adaptive multi-feature score-level fusion via cross-entropy normalization to improve the complementarity of
heterogeneous features. This mechanism combines the performance of multiple features in an unsupervised and has better
retrieval accuracy and generalization than single feature retrieval. To be specific, the relationship between fusion weight and
feature complementarity can be realized in an adaptive manner.

• Extensive experiment results on three public benchmark datasets have demonstrated that our method is highly competitive
and consistently outperforms several popular fusion methods by an obvious margin.

The rest of this paper is organized as follows. After briefly reviewing the related work in Section 2, we introduce the proposed
daptive multi-feature late fusion via cross-entropy normalization for effective image retrieval in Section 3. Experimental settings
nd analysis of the corresponding experimental results are given in Section 4 and Section 5, respectively. Section 6 introduces the
iscussions about our work and this paper will be concluded in Section 7.

. Related work

The related work of this paper involves the following two groups: single feature retrieval and feature fusion designs.
2
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2.1. Single feature retrieval

In the past decades, many advanced image processing methods have been investigated and applied in image classification, object
etection (Huang et al., 2019; Ma, Zhou, Qin, Zhou et al., 2022), image retrieval (Zheng et al., 2018) and so on. Especially for image
etrieval, (Jégou, Douze, Schmid, & Pérez, 2010) proposes the vector of locally aggregated descriptors (VLAD), joint optimization
f memory usage, retrieval accuracy and efficiency. To speed up the retrieval of inverted lists, PCA transformation and product
uantization coding are applied to VLAD (Jegou, Douze, & Schmid, 2010). The BoW is used to obtain a high accuracy rate, which
sually requires a large codebook. Perronnin and Dance (2007), Sánchez, Perronnin, Mensink, and Verbeek (2013) adopt a mixed
aussian model to approximate the distribution of low-level feature vectors, and further derived Fisher-Vector (FV). Xie et al. (2014)
rovides a local descriptor Max-SIFT that is invariant to horizontal flips. Experimental results on datasets such as scene classification
nd fine-grained classification show that Max-SIFT is better than SIFT, and better than the Dirichlet-based Histogram Feature
ransform (DHFT) proposed in Kobayashi (2014). Researchers also employ global descriptors for image retrieval, such as HSV,
IST, and other visual attribute features. Moreover, with the development of Artificial Intelligence, CNN-based high-level semantic

eature image retrieval methods are considered as the common practice in image retrieval, which almost completely replaces the
raditional low-level image descriptors for image retrieval (Amato, Carrara, Falchi, Gennaro, & Vadicamo, 2020; Ge, Wei, Yu, Singh,

Xiong, 2021; Pandey, Khanna, & Yokota, 2016; Zheng et al., 2018). High-level semantic features are used to replace traditional
ow-level image descriptors for image retrieval and are divided into two categories: (1) Convolutional layer features and (2) Full
onnection layer features. This classification takes into account mainly the location of extracted features derived from CNN model.
Convolutional layer features: (Liu, Shen, & van den Hengel, 2015) proposes cross-convolutional layer pooling, which is used

o encode convolutional layer features and achieved better results. Kalantidis, Mellina, and Osindero (2016) presents a cross-
onvolutional layer weighting to generate image descriptors by the last convolutional layer of CNN. Arandjelović, Gronat, Torii,
ajdla, and Sivic (2018) designs a novel generalized VLAD layer and leveraged an ‘end-to-end’ learning to generate NetVLAD
escriptors. Furthermore, experiments show that this framework and training procedure are significantly better than the existing
mage feature descriptors. To enrich the semantic information, (Chen et al., 2019) investigates a novel CMF-based framework,
amely, SCRATCH. This method utilizes Collective Matrix Factorization on the original features and semantic embedding to find a
hared latent semantic space while preserving the intra- and inter-modal similarities.
Full connection layer features: (Babenko, Slesarev, Chigorin, & Lempitsky, 2014) adopts pre-trained CNN to extract image

features and also provides ‘fine-tuning’ neural network to extract features. To increase the invariance of CNN features, (Gong,
Wang, Guo, & Lazebnik, 2014) extracts the multi-scales full connection layer features and uses them to form the VLAD vector. Bao
and Li (2017) leverages VLAD-pooling to aggregate the full connection layer features extracted from each slice, and the resulting
descriptor is called object-based deep feature aggregation. Öztürk (2020) designs an effective hash-generating method for medical
image retrieval, which leverages full-connection layer features at the output of the CNN architecture to generate hash codes, thus
reducing the semantic gap between low-level features and high-level semantics. Many types of research have proved the advantages
of global high-level semantic features in image retrieval, which is a promising technique to compensate for the weaknesses of local
features.

2.2. Feature fusion designs

Both retrieval methods based on a single low-level feature and a single high-level semantic feature can achieve gratifying
performance (Gkelios et al., 2021; Zheng et al., 2018), but these methods still have a large room for improvement. For this, some
effective fusion methods have been proposed, such as graph-based fusion, index-based fusion, and score-based fusion.

2.2.1. Graph-based fusion
It is well known that graph-based fusion visual retrieval has been proven to be effective, which integrates the initial retrieval

and visual consistency of images. Zhang et al. (2014) proposes a query-specific fusion based on the undirected graph. This method
modeled the retrieval ranks as graphs of candidate images, where multiple graphs are merged and reranked by conducting a link
analysis on a fused graph. Liu, Wang et al. (2017) believes that graph fusion is susceptible to ‘Outliers’, so they design an image graph
that is less susceptible. Different from graph fusion, image graph adopts the features of SIFT, GIST, HSV, and CNN, and achieves
better results than graph fusion in Holidays and UKbench. Inspired by the three-degree influence principle in social networks, (Liu
et al., 2020) provides a reranking method (N3G) based on a single feature and a multi-graph fusion ranking (MFR) method based on
social network group relation theory, which takes into account the correlation of all images in multiple neighborhood graphs. Lao
et al. (2021) presents a Three Degree Binary Graph (TDBG) to eliminate outlier candidates irrelevant to the query and utilizes a
set-based greedy algorithm to reduce the influence of adjacent manifolds, which further improved the retrieval performance of the
system.

2.2.2. Index-based fusion
Index construction plays an essential role in image retrieval, and index-level fusion is an effective fusion mechanism. Zhang

et al. (2015) proposes a Semantic Aware Co-indexing, in which both embedded image low-level local invariant features with strong
robustness and semantic attributes features with high-level semantic meaning into the inverted index, thus improving the indexing
differentiation. To improve the accuracy, (Liu, Guo, Wu, & Lew, 2015) includes CNN features in an index and designs the Deep-Index,
3
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Fig. 1. An overview of our feature fusion image retrieval system.

inverted multi-index structure proposed by Babenko and Lempitsky (2014) generalizes the inverted index idea by replacing the
standard quantization within inverted indices with product quantization, which achieves a much denser subdivision of the search
space compared to inverted indices for very similar retrieval complexity and pre-processing time. Bhowmik, González, Gouet-Brunet,
Pedrini, and Bloch (2014) presents and discusses a multi-dimensional feature fusion strategy based on inversion multi-index and
similarity search, and experimental results prove that the combined use of several descriptions achieves the purpose of improving
similarity search. Zhang et al. (2019) investigates a novel multi-index fusion image retrieval based on AlexNet and ResNet50
networks. This method inherits the core idea of Collaborative Indexing Embedding (CIE), which integrates the features of different
visual representations at index-level.

2.2.3. Score-based fusion
As we all know, for the multi-feature fusion image retrieval technique, given a query image, one does not know which

feature is valid or invalid without prior knowledge. Hence, it is significant to identify the effectiveness of features by an adaptive
manner. Zhang et al. (2018) observe that the geometric relational features based on distances between joints and selected lines
outperform other features, then proposes a multi-stream LSTM architecture with a new smoothed score fusion learn classification
from different geometric feature streams. The final fusion results reach the most advanced performance, but the advantage of this
method is only in that skeleton-based action recognition cannot be used for natural images. Then (Zheng et al., 2015) provided
a similar score-level multi-feature fusion with the name of ‘Score Fusion’. Zheng et al. (2015) argues that for a good feature, the
similarity ranking curve should decrease rapidly at the beginning and then tend to be stable, while the similarity ranking curve
of a bad feature will drop gradually. Score Fusion has two main characteristics: (1) The weights of each feature are not fixed
and are not easily affected by noneffective features. (2) The effectiveness of features is estimated online by using independent
datasets. Zheng et al. (2015) adopts five types of features: SIFT, HSV, CaffeNet full connective layer features, GIST, and Random
features. Extensive experiments show that Score Fusion is superior to the Graph-level Fusion (Zhang et al., 2014) and the Semantic
Aware Co-indexing (Zhang et al., 2015) in both retrieval performance and efficiency.

Differently, inspired by Score Fusion, we propose an adaptive multi-feature late fusion via cross-entropy normalization for
effective image retrieval. This method has two main advantages: (1) Compared with CaffeNet’s full connection layer features are
4096-dim, while in our work the high-level semantic features of 2048-dim and 1024-dim with higher feature utilization and smaller
redundancy are adopted respectively. (2) The mechanism of Score Fusion is beneficial to improving performance to a certain extent,
4
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Table 1
Key notations.

Notation Description

𝐹 = {𝐹1 , 𝐹2 ,… , 𝐹𝑖|𝑖 = 1, 2,… , 𝑐} 𝐹 indicates the features set, 𝐹𝑖 represents the 𝑖th type of
feature, and 𝑐 denotes the number of features to be fused.

𝑇 = {𝑇1 , 𝑇2 ,… , 𝑇𝑖|𝑖 = 1, 2,… , 𝑐} 𝑇 indicates the target set, 𝑇𝑖 represents the 𝐹𝑖 type target
ranking curve, and 𝑐 denotes the number of features to
be fused.

𝑅 = {𝑅1 , 𝑅2 ,… , 𝑅𝑖|𝑖 = 1, 2,… , 𝑐} 𝑅 indicates the references set, 𝑅𝑖 represents the 𝐹𝑖 type
reference ranking curve, and 𝑐 denotes the number of
features to be fused.

𝑆𝑞
𝑇𝑖

, 𝑆𝑞
𝑅𝑖

The similarity ranking between query image 𝑞 and target
dataset (Holidays, UKbench and Oxf5k), known as the
target distribution 𝑆𝑞

𝑇𝑖
, and the similarity ranking between

query image 𝑞 and the reference dataset (Flickr1M &
Flickr343Places), known as the reference distribution 𝑆𝑞

𝑅𝑖
,

both obtained on feature 𝐹𝑖.
(𝑢 ∶ 𝑣) 𝑢 and 𝑣 are the parameters of the vector segment that

restricts the matching region between two vectors. We
require that 𝑢 not be too small and that 𝑣 be relatively
large.

𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) and 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) represent the distribution of

similarity ranking curve on the target and reference
datasets in the (𝑢 ∶ 𝑣) vector segment respectively.

𝐻(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣)) The entropy of target distribution.

𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)), 𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) and 𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣))

represent the relative entropy and cross-entropy of
distribution between the target distribution and the
reference distribution, respectively.

𝐸(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) The cross-entropy of distribution between target

distribution and reference distribution.
𝐿(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) The final loss function.

𝑆𝑞∗
𝑅𝑖

𝑆𝑞∗
𝑅𝑖

is the optimal reference curve to query image 𝑞 for
feature 𝐹𝑖.

𝐴𝐹𝑖
𝐴𝐹𝑖

indicates the area under the cross-entropy normalized
similarity curve of features 𝐹𝑖.

𝑊 𝑞
𝐹𝑖

The weight of feature 𝐹𝑖 for query image 𝑞.

but there is still room for improvement in the complementarity of heterogeneous features. Therefore, by the distribution of the
similarity curve and reference curve, the proposed method adopts cross-entropy normalization to enhance complementarity.

3. The proposed method

Fig. 1 shows the pipeline of our proposal, and the step division of the pipeline is basically consistent with the method description
odule in Section 3.1∼3.4. Each module described in our method includes feature extraction, reference curve construction,

laborating the optimal reference curve, and adaptive fusion, which can be reflected in the corresponding step in the pipeline.
eanwhile, for readability and clarity, some of the notations adopted in this paper and their definitions are described in Table 1.

.1. Feature extraction

This paper adopts four low-level features: HSV, SIFT, GIST, RAND, and five high-level semantic features. Also, similar to Liu,
ang et al. (2017), Zheng et al. (2015), the similarity of all features is normalized by 𝑙2 paradigm.
[HSV] For each image, we calculate the HSV color histogram of 1000-dim, and the H, S, and V components are multiplied by

20 × 10 × 5 bins, respectively.
[BoW] For the SIFT descriptors of each image, our work leverages the 128-bit Hamming signature to embed each SIFT descriptor

into the inverted file to filter out false matches, with a hamming threshold of 52 and a weighting parameter of 26. Moreover, rootSIFT
and burstiness strategy (Zheng et al., 2015) are employed on two public benchmark datasets.

[GIST] In order to calculate the GIST descriptor, we adjust the image size to 256 × 256 and employ four types of feature scales
ith the number of scale orientations (8, 8, 8, 8) respectively.
[RAND] In order to illustrate the robustness of our method to ‘bad’ features, and also to reveal the performance superiority

f the Score Fusion (Zheng et al., 2015), we utilize a random feature, namely RAND. In effect, the RAND feature is a random
ransform matrix 𝑃 ∈ R𝑑×𝑚 (Zheng et al., 2015), where 𝑑 is the target feature dimension (set to 1000 in our experiment), and 𝑚 is
he dimension of the input image (with all pixels concatenated by columns).
[CNN] Pre-trained CNN architectures on ImageNet have demonstrated their generalization for unseen data. In our paper, the
5

re-training models of AlexNet, InceptionV3, VGG19, ResNet50, and DenseNet121 are adopted to extract high-level semantic features
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of three public benchmark datasets. It is worth noting that due to the difference in pre-training models, the dimensions of features
will also be different: the features extracted from both AlexNet and VGG19 models are 4096-dim, InceptionV3 and ResNet50 models
are 2048-dim, while the DenseNet121 model is 1024-dim.

3.2. Reference curve construction

The reference dataset Flickr1M (Jegou, Douze, & Schmid, 2008) and Flickr343Places (Zheng et al., 2015) both have 1M images.
hese two independent public datasets are adopted to construct the reference curves, which are then cross-entropy normalized
o the target ranking curve. The reference curve is mainly used to eliminate the ‘high tail’ of bad features. To find the optimal
eference curve, our work considers the relationship between the target curve distribution and the reference curve distribution.
hile the optimal reference curve can be regarded as approximating the end of the target curve and subtracting ‘end’ to highlight

he top of the target curve. In particular, experimental statistics show that considering the intrinsic distribution of the target curve
nd reference curve can not only eliminate the ‘high tail’ but also enhance the complementarity of heterogeneous features. The
eference curve for SIFT uses Flickr1M, while the reference curves for other features adopt dataset Flickr343Places. 𝑄 queries are

randomly selected as reference curve. Then, image retrieval of GIST, HSV, SIFT, RAND, and five high-level semantic features are
conducted in dataset of Flickr1M & Flickr343Place respectively. For feature 𝐹𝑖, there are 𝑄 reference curves, denoted as 𝑅𝑖.

3.3. Elaborating the optimal reference curve

Our method can not only effectively remove the ‘high tail’ but also improve the complementarity between heterogeneous
features. Specifically, the similarity ranking between query image 𝑞 and the target dataset (Holidays, UKbench and Oxf5k) is
enoted as 𝑆𝑞

𝑇𝑖
(i.e., the target distribution) and the similarity ranking between query image 𝑞 and the reference dataset (Flickr1M

& Flickr343Places) is denoted as 𝑆𝑞
𝑅𝑖

(i.e., the reference distribution), which are both obtained for feature 𝐹𝑖. Since 𝑆𝑞
𝑇𝑖

can be easily
calculated given the query and the target dataset, our goal is to find the reference that best matches the tail of 𝑆𝑞

𝑇𝑖
in 𝑅𝑖.

According to the target distribution 𝑆𝑞
𝑇𝑖

, our strategy is to eliminate the ‘high tail’ of bad features by matching the optimal
reference curve at the minimum cost. 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) and 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) represent the distribution of similarity ranking curve on the target

dataset and reference dataset in the (𝑢 ∶ 𝑣) vector segment respectively. Then entropy of target distribution 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) is defined

as 𝐻(𝑆𝑞
𝐹𝑖
(𝑢 ∶ 𝑣)) = −

∑

𝑖 𝑆
𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) log𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣). While relative entropy 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) is a non-symmetric measure of the

difference between two distributions. Concretely, in our work it is a measure of the heterogeneous features’ complementarity when
𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣) is used to approximate 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣). Formally, the relative entropy is defined as

𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) =

∑

𝑖
𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) log

𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣)

𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣)

=
∑

𝑖
[𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) log𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) − 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) log𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)] (1)

From Eq. (1), 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) and 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) are approximate to each other, so relative entropy 𝐷(𝑆𝑞

𝐹𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) is smaller.

deally, if the distribution of target curve and reference curve is the same, 𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) = 0. By Theorem 1 (please kindly

efer to the appendix of Appendix), only if 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) = 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣), 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) = 0. However, the curves come from

ifferent datasets then 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) ≠ 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣), so by Eq. (1), we have 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) > 0. Our goal is to minimize the

ost of complementarity between heterogeneous features when 𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣) approaches 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣). According to the above discussion,

ross-entropy can be defined as

𝐸(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) =

∑

𝑖
𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) log 1

𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣)

= −
∑

𝑖
𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) log𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) (2)

q. (1) can be simplified as followed:

𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) = 𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) −𝐻(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣)) (3)

From Theorem 1, 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) ≠ 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) implies that 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) > 0, so 𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) −𝐻(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣)) > 0.

oreover, according to Eq. (3), minimizing the relative entropy 𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) is to minimize the cross-entropy

(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)).

By Theorem 2 (please refer to the appendix of Appendix), minimizing the difference between the distribution 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) of

arget curves and the distribution 𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣) of reference curves is equivalent to minimize the relative entropy between them. So

he cross-entropy loss model for the reference distribution 𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣) and target distribution 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) is defined as

{𝑆𝑞∗
𝑅𝑖
} = arg min

𝑖
𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) ⇔ arg min

𝑖
𝐿(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) (4)

wherein the loss function in the last term is defined as

𝐿(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) =

𝑐
∑

𝑖=1
[𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣) log𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) − (1 − 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣)) log(1 − 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣))] (5)

We can find the optimal reference curve 𝑆𝑞∗
𝑅𝑖

from bow, hsv, gist, rand, and high-level semantics by minimizing cross-entropy
6

oss. The cross-entropy loss algorithm is shown in Algorithm 1.
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Algorithm 1 Cross-Entropy Loss Algorithm
Offline:

1: The target distribution between query image 𝑞 and the target dataset (Holidays, UKbench and Oxf5k) 𝑑 on feature 𝐹𝑖 is denoted
as 𝑆𝑞

𝑇𝑖
.

2: The reference distribution between query image 𝑞 and the reference dataset (Flickr1M & Flickr343Places) on feature 𝐹𝑖 is denoted
as 𝑆𝑞

𝑅𝑖
.

nline:
1: Input: 𝐹 = {𝐹1, 𝐹2, ..., 𝐹𝑖|𝑖 = 1, 2, ..., 𝑐} kinds of feature, target distribution 𝑆𝑞

𝑇𝑖
and reference distribution 𝑆𝑞

𝑅𝑖
, vector segment of

matching constraint region (𝑢 ∶ 𝑣).
2: Output: matching optimal reference curve 𝑆𝑞∗

𝑅𝑖
.

3: Initialize the target distribution 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) and reference distribution 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣).

4: Calculate cross-entropy loss between 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) and 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) by Eq. (5).

5: Update 𝑅𝐹(𝑖+1) (where 𝑖 represents the type of feature to be fused, 𝑅𝐹𝑖 denotes the reference curve of corresponding feature).
6: Repeat steps. 4-5 until 𝑆𝑞∗

𝑅𝑖
satisfies requirement of minimizing the cross-entropy loss between the target distribution 𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣)

and the reference distribution 𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣).

7: Output the best match 𝑆𝑞∗
𝑅𝑖

.

3.4. Adaptive fusion

We obtained the optimal reference curve 𝑆𝑞∗
𝑅𝑖

by cross-entropy loss, the next step is to eliminate the ‘high tail’ of the target curve
hrough the optimal reference curve 𝑆𝑞∗

𝑅𝑖
.

⌢
𝑆𝑞
𝑇𝑖

= 𝑆𝑞
𝑇𝑖
− 𝑆𝑞∗

𝑅𝑖
(6)

, wherein 𝑆𝑞
𝑇𝑖

is the target distribution, 𝑆𝑞∗
𝑅𝑖

is the optimal reference curve from reference distribution, both of which are obtained

on feature 𝐹𝑖. Then,
⌢
𝑆𝑞
𝑇𝑖

undergoes min–max normalization:

�̃�𝑞
𝑇𝑖

=

⌢
𝑆𝑞
𝑇𝑖
− (

⌢
𝑆𝑞
𝑇𝑖
)𝑚𝑖𝑛

(
⌢
𝑆𝑞
𝑇𝑖
)𝑚𝑎𝑥 − (

⌢
𝑆𝑞
𝑇𝑖
)𝑚𝑖𝑛

(7)

After min–max normalization by Eq. (7), good query features tend to have a small area under the score curve, and vice versa. In
his way, the similarity curves �̃�𝑞

𝑇𝑖
can be used to estimate the effectiveness of different feature representations based on the similarity

t shares with each query, so that those ‘good’ features are endowed with larger weights for providing greater contributions, while
he ‘bad’ features are punished, thus attaining differential fusion of heterogeneous features.

𝑊 𝑞
𝐹𝑖

=

1
𝐴𝐹𝑖

∑𝑐
𝑖=1

1
𝐴𝐹𝑖

, (8)

where 𝐴𝐹𝑖 represents the area under the similarity curve �̃�𝑞
𝑇𝑖

normalized by Eq. (7). Next, the Eq. (8) will be applied to Eq. (9) to
assign feature fusion weights adaptively. To be specific, suppose that given query image 𝑞 with 𝑐 features to be fused, the similarity
between query image 𝑞 and every image in the target dataset 𝑑 on feature 𝐹𝑖 is denoted as 𝑆𝑞

𝑇𝑖
, where 𝑖 = 1, 2,… , 𝑐. Let the weight of

uery image 𝑞 with respect to feature 𝐹𝑖 be 𝑊 𝑞
𝐹𝑖

, and its sum be 1. Therefore, the similarity measurement of adaptive multi-feature
usion can be defined as,

𝑠𝑖𝑚(𝑞, 𝑑) =
𝑐

∏

𝑖=1
(𝑆𝑞

𝑇𝑖
)(𝑊

𝑞
𝐹𝑖
), 𝑤ℎ𝑒𝑟𝑒

𝑐
∑

𝑖=1
𝑊 𝑞

𝐹𝑖
= 1 (9)

For each input query image, we complete the fusion by extracting features, constructing target/reference distribution, and
ormalization of cross-entropy loss. Also, since our method is late-processing, the above steps are used to complete the retrieval
ask for each new query. Hence, feature extraction of the target dataset and reference dataset is offline, while feature extraction of
ew query and cross-entropy normalization feature fusion is online. Meanwhile, in our work, we only consider time complexity of
7

he online part, and Section 5.6 has a detailed time complexity analysis.
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4. Experimental settings

4.1. Benchmark datasets

We briefly introduce the public datasets: Holidays (Jegou et al., 2008), UKbench (Nister & Stewenius, 2006), Oxf5k (Philbin,
hum, Isard, Sivic, & Zisserman, 2007), Flickr1M (Jegou et al., 2008), and Flickr343Places (Zheng et al., 2015).

The Holidays dataset is collected by Jegou et al. (2008) from personal holiday albums, so most of the images are of various
cene types. The dataset consists of 1491 images from 500 categories of similar images. Each image category has one query,
otaling 500 query images. To more clearly represent retrieval performance, we adopt average precision (AP) as a metric to evaluate
odel performance. In general, a larger AP means a higher precision–recall curve, resulting in better retrieval results. Moreover,

ince retrieval datasets typically have multiple query images, their respective APs are averaged to produce the final performance
valuation, namely, the mean average precision (mAP).

The UKbench dataset is collected by Nister and Stewenius (2006), which contains 2550 categories and 10,200 images in total.
ach category has four images depicting the same scene, under various viewpoints, illuminations, etc. In the experiment, each image
s taken as the query in turn so there are 10,200 queries and using an N-S index (maximum 4) as a performance evaluation indicator.

The Oxf5k dataset is collected by crawling for particular Oxford landmark images from Flickr. This dataset consists of 5062
mages, which has a comprehensive ground truth for 11 different landmarks, each containing five possible queries. For each query,
t has many similar images of the same instance, which are taken from different views. The performance is measured by mean
verage Precision (mAP).

The Flickr1M & Flickr343Places datasets both have 1M images. Since both two datasets cover images that have similar scene
categories as the target datasets (including Holidays, UKbench, and Oxf5k), so providing sufficient feature correlation. Thus, these
two independent and extremely public datasets are used to construct the reference curve, which is then cross-entropy normalized
to the target curve.

We select the datasets for both task variety and benchmark consistency. On one hand, the four selected datasets cover large/small
collections, campus/people/city/scenery domains, dense/sparse categories, which together represent typical retrieval tasks. On the
other hand, these datasets are also adopted by recent image retrieval literature.

4.2. Experiment setup

We demonstrate the experimental result of our method on three public datasets and compare it with existing baseline methods.
The experiments are conducted with Windows 64, Intel i7-7800X CPU, 64.00 GB RAM, and two Nvidia GeForce GTX-1080Ti GPUs.
Meanwhile, to alleviate the adverse influence of randomness, we repeat our experiment for 5 times and report the average values
and the corresponding standard deviations.

4.3. Research questions

To examine the effectiveness of our proposal, we conduct extensive experiments to answer the following research questions
(RQs):

RQ1: What is the retrieval baseline of 9 single features?
RQ2: What is the retrieval performance of multi-feature fusion?
RQ3: How do the involved parameter variables in our method affect the retrieval performance?
RQ4: How does the fusion of different high-level semantic features in our method affect retrieval performance?
RQ5: Is the overall performance of our method superior to the baselines?
RQ6: What are the efficiency (run-time) and memory cost of our method?

5. Experimental results and analysis

In this section, we present the results of the experiments with the corresponding analysis on public benchmark datasets for image
retrieval.

5.1. Retrieval performance of single feature

To answer RQ1, we extract 9 features on Holidays, UKbench and Oxf5k datasets, including four low-level features and five high-
level semantic features, respectively. Meanwhile, to be fair, we compare descriptions given the same parameters (single feature
retrieval parameters 𝑢, 𝑣 and 𝑄 are the same, the sensitivity will be evaluated in Section 5.3). The retrieval accuracy of a single
feature is presented in Tables 2 and 3.

It shows that the low-level BoW has achieved 80.16% of mAP, 3.582 of N-S and 74.83% of mAP performance on Holidays,
UKbench and Oxf5k datasets, respectively. However, GIST and RAND have achieved poor performance on the three public
benchmark datasets. Specifically, the features of GIST and RAND are introduced mainly for comparison with Score Fusion. For
the high-level semantic features, the features extracted from the DenseNet121 network model achieved 75.90% of the mAP, 3.685
8

of the N-S and 48.19% of the mAP on Holidays, UKbench and Oxf5k datasets, respectively. Moreover, the feature extracted from
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Table 2
Image retrieval performance of four low-level features.

Dataset/Method HSV BoW GIST RAND

Holidays, mAP(%) 61.32 80.16 33.81 13.49
UKbench, N-S 3.195 3.582 1.856 1.422
Oxf5k, mAP(%) 35.32 74.83 12.94 9.38

Table 3
Image retrieval performance of five high-level semantic features.

Dataset/Method AlexNet VGG19 InceptionV3 ResNet50 DenseNet121

Holidays, mAP(%) 69.33 63.59 65.50 74.83 75.90
UKbench, N-S 3.397 3.319 3.388 3.638 3.685
Oxf5k, mAP(%) 44.56 41.32 43.28 47.51 48.19

Fig. 2. Feature visualization of different CNN pre-trained models.

Fig. 3. A visualization example of image retrieval using the high-level semantic feature extracted by different CNN pre-trained models.

both AlexNet and VGG19 models is 4096-dim, InceptionV3 and ResNet50 models are 2048-dim, while DenseNet121 model is 1024-
dim. As the dimension decreases, the redundancy of features is also decreasing and the utilization rate of features is increasing, thus
achieving a better performance. This trend is mainly due to the use of dense residual blocks in DenseNet121, which enables features
to be fused at multi-scales. This is consistent with the performance obtained in image classification (Huang et al., 2019). In a word,
the BoW features correspond to the best performances on Holidays and Oxf5k when a single feature is adopted for retrieval. While
the features extracted from the DenseNet121 network model correspond to the best performances on UKbench when single feature
is leveraged for retrieval.

As shown in Figs. 2 and 3, we have added two qualitative experimental results, feature visualization and retrieval visualization,
to better illustrate the differences in features from different pre-trained CNN models. In Fig. 2, we visualize five high-level semantic
features: AlexNet and VGG19 models are 4096-dim, InceptionV3 and ResNet50 models are 2048-dim, while DenseNet121 model is
1024-dim. One can see that from AlexNet to DenseNet, the models focus more on fine-grained information while ignoring background
and noise information. Namely, as the dimension decreases the redundancy of features is decreasing and the utilization rate of
features is increasing. Meanwhile, we demonstrate some examples of retrieving relevant images using high-level semantic features
extracted from various CNN models. True-matched images are marked with the green symbol, and false-matched ones are red. As
can be seen from Fig. 3, although the same query image is used, there will be great differences in the results due to the semantic
features of diversity extracted by distinct models.
9
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Fig. 4. The feasibility of the proposed method. In without changing the features, we compare with Score Fusion by the feature fusion manner of ‘BoW+GIST’,
‘BoW+HS’ and ‘BoW+AlexNet’ on Holidays and UKbench. The cyan and green bars show results by ‘Reference’ of Score Fusion and our ‘Cross-entropy Reference’,
respectively.

Fig. 5. In without changing the features, comparison of the performance with Score Fusion on Holidays and UKbench. The slash cyan bar represents the baseline
of BoW, while the cyan and green bars show results by ‘Reference’ of Score Fusion and our ‘Cross-entropy Reference’, respectively.

5.2. Fusion multi-feature

To answer RQ2, we employ their (Score Fusion) released code and default parameters to conduct the cross-entropy normalized
fusion with four features: BoW, HS, GIST, and AlexNet. The fusion results on the two datasets are shown in Fig. 4, it can be seen that
the fusion mechanism is effective. In the datasets of Fig. 4(a) Holidays and Fig. 4(b) UKbench, three fusion manners of four features
are used respectively. In Holidays, the mAP of ‘BoW+GIST’ and ‘BoW+AlexNet’ increased to 81.23% and 86.76% respectively, and
the N-S of ‘BoW+GIST’ and ‘BoW+AlexNet’ increased to 3.610 and 3.828 respectively in UKbench.

In addition, multi-feature is fused with BoW on two datasets and the result comparisons are presented in Fig. 5. It shows that on
both datasets the proposed method outperforms Score Fusion. Experiments are conducted on five features fusion: ‘BoW+GIST’,
‘BoW+GIST+RAND’, ‘BoW+GIST+RAND+HS’ and ‘BoW+GIST+RAND+HS+AlexNet’. The slash cyan bar represents the baseline
result of BoW, while the cyan bar and the green bar respectively represent the Score Fusion and our method. Overall, our method is
superior to Score Fusion, especially after the fusion of high-level semantic features. The detailed experimental results of multi-feature
fusion on three datasets comparing two methods are shown in Table 4. When multiple features are fused, the performance is further
boosted. The fusion of five features (BoW+GIST+RAND+HS+AlexNet) achieves 88.68% in mAP, 3.859 in N-S and 84.65% in mAP on
Holidays, UKBench and Oxf5k, respectively. Moreover, with DenseNet121 feature, our performance are further enhanced to 89.02%
in mAP, 3.8813 in N-S and 84.95% in mAP, respectively.

5.3. Ablation study of parameter tuning

To answer RQ3, we conduct a series of ablation studies to investigate the contributions of different parameter variables on
Holidays and UKbench. In our work, the experiment mainly involves four parameter variables, which 𝑢 and 𝑣 are the vector segment
10
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Table 4
Fusion results (mean±std) of different feature combinations on three public benchmarks datasets.

Feature combinations Holidays, mAP(%) UKbench, N-S Oxf5k, mAP(%)

Score Fusion
(Zheng et al.,
2015)

Ours Score Fusion
(Zheng et al.,
2015)

Ours Score Fusion
(Zheng et al.,
2015)

Ours

BoW+GIST 80.88 ± 0.2 81.61 ± 0.2 3.590 ± 0.02 3.610 ± 0.02 79.51 ± 0.1 79.62 ± 0.1
BoW+RAND 80.91 ± 0.1 80.91 ± 0.1 3.596 ± 0.01 3.605 ± 0.01 79.23 ± 0.2 79.30 ± 0.1
BoW+GIST+RAND 81.47 ± 0.1 81.47 ± 0.1 3.590 ± 0.02 3.632 ± 0.01 79.72 ± 0.2 79.88 ± 0.1
BoW+HS 84.47 ± 0.2 84.47 ± 0.1 3.755 ± 0.02 3.755 ± 0.02 80.27 ± 0.2 80.42 ± 0.2
BoW+AlexNet 86.27 ± 0.1 86.76 ± 0.2 3.802 ± 0.03 3.828 ± 0.02 81.53 ± 0.3 82.45 ± 0.2
BoW+HS+AlexNet 87.95 ± 0.2 88.49 ± 0.2 3.840 ± 0.01 3.855 ± 0.02 82.38 ± 0.3 83.04 ± 0.2
BoW+GIST+RAND+HS+AlexNet 87.98 ± 0.1 88.68 ± 0.2 3.841 ± 0.02 3.859 ± 0.03 83.73 ± 0.3 84.65 ± 0.3
BoW+VGG19 81.39 ± 0.4 85.59 ± 0.2 3.623 ± 0.01 3.772 ± 0.02 76.89 ± 0.1 80.27 ± 0.2
BoW+HS+VGG19 84.93 ± 0.3 87.17 ± 0.2 3.770 ± 0.02 3.832 ± 0.03 79.52 ± 0.2 82.93 ± 0.3
BoW+GIST+RAND+HS+VGG19 85.31 ± 0.2 87.27 ± 0.2 3.775 ± 0.05 3.836 ± 0.03 80.28 ± 0.3 83.14 ± 0.1
BoW+InceptionV3 82.62 ± 0.4 84.98 ± 0.3 3.641 ± 0.03 3.837 ± 0.01 77.62 ± 0.2 80.84 ± 0.2
BoW+HS+InceptionV3 86.12 ± 0.1 87.87 ± 0.1 3.779 ± 0.02 3.853 ± 0.02 80.25 ± 0.1 83.37 ± 0.2
BoW+GIST+RAND+HS+InceptionV3 86.13 ± 0.2 87.94 ± 0.1 3.783 ± 0.02 3.854 ± 0.03 80.38 ± 0.2 83.79 ± 0.2
BoW+ResNet50 82.70 ± 0.6 88.02 ± 0.4 3.634 ± 0.01 3.823 ± 0.03 78.03 ± 0.3 81.24 ± 0.3
BoW+HS+ResNet50 85.48 ± 0.2 88.19 ± 0.3 3.773 ± 0.03 3.853 ± 0.02 80.74 ± 0.4 83.50 ± 0.3
BoW+GIST+RAND+HS+ResNet50 85.57 ± 0.4 88.29 ± 0.4 3.777 ± 0.02 3.855 ± 0.02 80.86 ± 0.2 83.67 ± 0.2
BoW+DenseNet121 83.23 ± 0.2 87.95 ± 0.3 3.670 ± 0.01 3.858 ± 0.02 79.84 ± 0.1 82.74 ± 0.2
BoW+HS+DenseNet121 86.06 ± 0.2 88.97 ± 0.2 3.787 ± 0.02 3.8812 ± 0.01 82.47 ± 0.2 84.81 ± 0.2
BoW+GIST+RAND+HS+DenseNet121 86.17 ± 0.2 89.02 ± 0.3 3.790 ± 0.01 3.8813 ± 0.01 82.54 ± 0.3 84.95 ± 0.2

Fig. 6. The sensitivity of parameter 𝑄 on Holidays and UKbench. We set the ablation experiment with fine-tuning parameters of 𝑘𝑁𝑁=5, 10, 20, 35, 55 and
𝑄=100, 200, 400, 600, 800, 1000, 1200, 1491, respectively. Specifically, if not explicitly stated we set 𝑄=1000 and 𝑘𝑁𝑁=10 in our work.

parameters that restrict search and matching of the optimal reference curve, the number of reference curves 𝑄, and 𝑘𝑁𝑁 . Compared
with other methods, 𝑢 and 𝑣 are the same as Score Fusion, which is 10 and 400 respectively. The performance sensitivity of the
number of reference curves 𝑄 is evaluated and the results are shown in Fig. 6.

It is shown in Fig. 6 that with the number of reference curves 𝑄 increases, the accuracy is gradually improved. Our work sets
𝑘𝑁𝑁=5, 10, 20, 35, 55 and 𝑄=100, 200, 400, 600, 800, 1000, 1200, 1491, respectively. This result also confirms the necessity
of reference curve for performance improvement. In particular, the proposed method can find a good approximation to the tail if
the best matching reference curve is searched over a larger range. Nevertheless, the computational complexity of the whole system
will also increase with the increase of 𝑄. Therefore, in order to balance efficiency and accuracy, we set 𝑄=1000 in the experiment
without explicitly stating it.

Our method uses the codes released by Score Fusion to conduct the effect of cross-entropy and non-cross-entropy normalization on
11

fine-tuning parameters, in Fig. 6. To further illustrate the strength of our method, we employ high-level semantic features with higher



Information Processing and Management 60 (2023) 103119W. Ma et al.
Fig. 7. The ablation research of fusing different high-level semantic features and fine-tuning parameters 𝑄 on Holidays and UKbench. Similar to Fig. 6, this
paper sets the 𝑘𝑁𝑁=5, 10, 20, 35, 55 and 𝑄=100, 200, 400, 600, 800, 1000, 1200, 1491, respectively.

Fig. 8. Comparison of different high-level semantic feature fusion BoW. The cyan and green bars show results by ‘Reference’ of Score Fusion and ‘Cross-entropy
Reference’ of our method, respectively.

feature utilization rate to conduct fine-tuning parameter experiments. As can be seen from Fig. 7, the high-level semantic features
extracted by DenseNet121 with higher feature utilization rate are used. Our method not only maintains the steady improvement of
fusion accuracy along with the increment of reference curve 𝑄, but also on both datasets our method is superior to Score Fusion.

5.4. Fusion of different high-level semantic features

To answer RQ4, we adopt high-level semantic information features with less redundancy and a higher feature utilization rate.
Five kinds of pre-training CNN models, AlexNet, InceptionV3, VGG19, ResNet50 and DenseNet121 are leveraged to extract high-level
semantic features, and their feature utilization rate is gradually improved. The experimental results on the three datasets are shown
in Figs. 8 and 9 that one can draw the following conclusions:

• In Fig. 8, BoW and five high-level semantic features are fused respectively on three datasets: ‘BoW+AlexNet’, ‘BoW+VGG19’,
‘BoW+InceptionV3’, ‘BoW+ResNet50’ and ‘BoW+DenseNet121’. The cyan bar and the green bar represent the Score Fusion
and our method, respectively. It can be seen that our performance is superior than that of Score Fusion. In particular, when
combined with ‘BoW+ResNet50’ features, our work has a great improvement on Holidays, by 5.3 points. BoW is not well fused
with VGG19 and InceptionV3 respectively, since the performance of AlexNet is better than that of VGG19 and InceptionV3 on
individual feature retrieval in Table 3.

• In Fig. 9, BoW, HSV and five high-level semantic features are fused on three datasets, ‘BoW+HS+AlexNet’, ‘BoW+HS+VGG19’,
‘BoW+HS+InceptionV3’, ‘BoW+HS+ResNet50’, ‘BoW+HS+DenseNet121’. The cyan bar and the green bar respectively repre-
sent the Score Fusion and our method. When combining three features, our performance is also better than Score Fusion.
Especially, the ‘BoW+HS+AlexNet’ is better than the five features fusion of Score Fusion. With the improvement of the
12
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Fig. 9. Comparison of different high-level semantic feature fusion BoW and HSV. The cyan and green bars show results by ‘Reference’ of Score Fusion
and ‘Cross-entropy Reference’ of the proposed method, respectively. In particular, the accuracy of ‘BoW+HS+AlexNet’ using our work is better than that of
‘BoW+GIST+RAND+HS+AlexNet’ using Score Fusion on Holidays.

Fig. 10. Some illustrative search examples from Holidays (left) and UKBench (right), respectively. For each query, its top-5 ranked images resulted from GIST
(the first row), HSV (the second row), DenseNet121 (the third row), BoW (the fourth row) and the proposed method (the fifth row) are shown, respectively.
True matched images are marked with green box, and false matched ones red.

utilization rate of high-level semantic features, our performance is also improved steadily, and the ‘BoW+HS+DenseNet121’
has the best fusion performance. The experimental results of five high-level semantic feature fusion are shown in Table 4.

• Furthermore, we also qualitatively illustrate the performance and the advantages of our method. Specifically, it can be seen
from Fig. 10 that our method allows more query-related images to be retrieved in the top returned shortlist compared with
the other competitors.

5.5. Comparison with other fusion methods

To answer RQ5, we compare our results with three existing fusion mechanisms: Semantic Aware Co-indexing (Zhang et al.,
2015), Graph Fusion (Zhang et al., 2014) and Score Fusion (Zheng et al., 2015). In the experiment, our method adopts their codes
and default parameters for Graph Fusion. The only difference of this method is that 𝑘𝑁𝑁 parameters are different (all parameters
of our method are the same as Score Fusion). Multiple features are fused with BoW. In Table 5, the experimental results show
that our method is better than Graph Fusion. In Score Fusion∗ (Zheng et al., 2015), the author also tried fine-tuning the global
weight, manually adjusting the weight at a step size of 0.1. From the experimental results, the performance of the adaptive weight
adjustment fusion of two features is not as good as ‘fine-tuning the global weight’, but the effect of the adaptive weight adjustment
is better when three or five features are fused. Our work is also adaptive weight, whether two or three or five features are fused,
and its performance is almost better than the first two.

Compared with Semantic Aware Co-indexing, the BoW is adopted by Co-indexing (Zhang et al., 2015) and Score Fusion‡ (Zheng
et al., 2015) is not hamming embedded, and the precision of single feature retrieval on the two public benchmark datasets is
mAP=50.10% and N-S=3.112, respectively. Even in this case, the Score Fusion is improved a lot. The performance of the BoW used
in our paper has been improved to mAP=80.16% and N-S=3.582 respectively on Holidays and UKbench by hamming embedded,
and fusing other features is even better. According to the above experimental results, and compared with Semantic Aware Co-
indexing, Graph Fusion and Score Fusion, our method can better optimize the complementarity of heterogeneous features, thus
the performance is greatly improved. Furthermore, the experimental results of the proposed method are compared with the state-
of-the-art in Table 6. Our results achieve mAP = 89.02%, N-S = 3.881 and mAP = 84.95% on Holidays, UKbench and Oxf5k,
respectively.
13
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Table 5
The overall performance (mean±std) comparison with Co-indexing (Zhang et al., 2015), Graph Fusion (Zhang et al., 2014) and Score Fusion (Zheng et al., 2015)
on two public benchmark datasets. In particular, Score Fusion∗ (Zheng et al., 2015) indicates fine-tuning the global weight, the author manually adjusts the

eight at a step size of 0.1. Score Fusion‡ (Zheng et al., 2015) represents that all feature descriptors are not hamming embedded.
Feature combinations Holidays, mAP(%) UKbench, N-S

Graph Fusion
(Zhang et al.,
2014)

Score Fusion∗
(Zheng et al.,
2015)

Score Fusion
(Zheng et al.,
2015)

Ours Co-indexing
(Zhang et al.,
2015)

Score Fusion‡
(Zheng et al.,
2015)

Score Fusion
(Zheng et al.,
2015)

Ours

BoW+GIST 76.39 ± 0.2 81.54 ± 0.3 80.88 ± 0.2 81.61 ± 0.2 2.766 ± 0.03 3.177 ± 0.03 3.590 ± 0.02 3.610 ± 0.02
BoW+RAND 76.57 ± 0.2 81.18 ± 0.2 80.91 ± 0.1 80.91 ± 0.1 2.701 ± 0.02 3.210 ± 0.01 3.596 ± 0.01 3.605 ± 0.01
BoW+GIST+RAND 70.59 ± 0.1 81.65 ± 0.2 81.47 ± 0.1 81.47 ± 0.1 2.829 ± 0.01 3.263 ± 0.03 3.590 ± 0.02 3.632 ± 0.01
BoW+HS 81.58 ± 0.2 84.18 ± 0.1 84.47 ± 0.2 84.47 ± 0.1 3.504 ± 0.02 3.541 ± 0.03 3.755 ± 0.02 3.755 ± 0.02
BoW+AlexNet 83.36 ± 0.1 86.60 ± 0.3 86.27 ± 0.1 86.76 ± 0.2 3.562 ± 0.02 3.624 ± 0.03 3.802 ± 0.03 3.828 ± 0.02
BoW+HS+AlexNet 83.75 ± 0.3 87.23 ± 0.4 87.95 ± 0.2 88.49 ± 0.2 3.661 ± 0.01 3.750 ± 0.02 3.840 ± 0.01 3.855 ± 0.02
BoW+GIST+RAND+HS+AlexNet 81.04 ± 0.1 87.34 ± 0.2 87.98 ± 0.1 88.68 ± 0.2 3.608 ± 0.02 3.752 ± 0.04 3.841 ± 0.02 3.859 ± 0.03

Table 6
Performance comparison with other state-of-the-art methods. Here, ‘‘-’’ denotes that no experimental results with same settings are available.

Method/Dataset&Indicators Holidays, mAP(%) UKbench, N-S Oxf5k, mAP(%) Query time (s) Memory cost (GB)

BOF (Jégou, Douze, & Schmid,
2009)

84.80 3.64 – – –

Co-RMGL (Deng et al., 2013) 84.70 3.75 84.3 – –
MBF (Zheng, Wang, & Tian,
2014)

85.20 3.79 – 0.145 6.1

Index fusion (Zheng, Wang, Liu
et al., 2014)

85.80 3.85 – 1.413 6.1

CroW (Kalantidis et al., 2016) 85.10 3.63 71.8 – –
FDLCDF (Liu, Guo et al., 2017) 82.05 3.636 – 0.075 –
GatedSQU (Chen et al., 2018) 88.80 3.74 69.4 – –
Graph Fusion (Zhang et al., 2014) 84.64 3.83 – 0.749 –
MMF-SIFT (Zhang et al., 2019) 84.40 3.04 – – –
Score Fusion (Zheng et al., 2015) 87.98 3.841 83.73 – 0.076
SaCoCo (Iakovidou et al., 2019) 76.10 3.33 – – –
RGSF (Valem & Pedronette,
2020a)

90.51 3.79 79.42 – –

N3G-MFR (Liu et al., 2020) 86.45 3.88 – 1.68 –
BMSL-CSRSL (Wu et al., 2021) 84.70 3.64 72.2 – –
SMVF (Li et al., 2021) 87.80 3.77 65.1 – –
MFBCR (Lao et al., 2021) – 3.93 – 4.667 0.211
DSFH (Liu & Yang, 2021) 74.76 3.528 62.2 – –
Ours 89.02 3.8813 84.95 0.214 0.41

5.6. Retrieval efficiency and cost

To answer RQ6, we discuss the average query time and memory cost in this section. Our proposal includes both offline procedures
nd online procedures. Considering the experimental scenario, we neglect the model training step and feature extraction step on the
ffline part. For the online part, in the proposed method, most of the computation costs focus on similarity computing, including the
imilarity between a query and every image in the target datasets as well as the similarity between a query and every image in the
eference datasets. Suppose the size of the target dataset is 𝑁 and the reference dataset is 𝑀 , while the fundamental computation
omplexity is required for the similarity measure 𝑂(𝑁𝑀). However, in practical experiments, we perform two matches (query for
arget dataset and query for reference dataset) under several feature representations. As a result, given a new query 𝑞, we need to
ompute the similarity between 𝑞 and every image in two datasets with computation complexity 𝑂(𝐾𝑁𝑀), where 𝐾 is the number
f to-be-fused feature representations in a query image.

Table 6 shows the comparison of average query time and memory cost on two datasets with other competitors. For query time,
t should be noted that the feature dimensions and the number of features to-be-fused in our work are not exactly the same as other
ethods. Specifically, FDLCDF (Liu, Guo et al., 2017) (adopts the semantic feature of 1000-dim, which integrates three features;

urs 1024-dim, combines five features, so the average query time is about 0.214 s) and Score Fusion (Zheng et al., 2015) (semantic
eature 4096-dim is adopted, while ours 1024-dim). Furthermore, our method is a late-processing fusion technology that works on
given similarity score. We also compares the time of late-processing steps of our method with other late-processing counterpart

onsidered in Table 6, such as Graph Fusion (Zhang et al., 2014) and Score Fusion (Zheng et al., 2015). However, the efficiency of
he retrieval system depends on many objective factors, such as the performance of the computer, the dimension of the features,
he number of fused features and so on. Still, it can broadly reflect the highly competitive result of our method.

In addition, the memory footprint is also an indicator of retrieval performance, the memory cost of the proposed method is about
.41 GB. Our method adopts the same framework with Graph Fusion and Score Fusion, thus the memory costs of these methods
re similar to ours in theory. Yet, it is about 5 times higher than the Score Fusion, mainly because the reference curve codebook
sed in the online evaluation requires only 0.076 GB of extra memory. In this paper, there is a process to calculate and select the
ptimal reference curve, so the theoretical memory footprint is about 5 times that of Score Fusion. The experimental results show
14

hat this trend is indeed consistent with the theory.
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6. Discussions

In this paper, we propose an adaptive multi-feature late fusion via cross-entropy normalization for effective image retrieval, which
chieves competitive results compared with existing methods. Hence, the theoretical and practical implications of our research can
reatly promote the development of image retrieval technique to a certain extent. Specifically, it is summarized as follows:

• No free lunch for feature representation in retrieval tasks. The discriminability of feature representations varies from query
to query, influenced by its semantic domain, content property, and even subjective characteristics. In other tasks, adopting a
flexible ensembling method is also a good manner to practice improving performance.

• The knowledge in large datasets is beneficial for guiding computer vision tasks, such as its feature representation can be
leveraged to evaluate the generalization of models and can also be adopted as an indicator of utility sensitivity.

Yet, this work also has some drawbacks. Specifically, it is summarized as follows:

• Our work employs the pre-training CNN model based on image classification to extract the high-level semantic features and
achieve promising performance. However, image classification is different from image retrieval. Image retrieval is a more
fine-grained issue, which pays more attention to the local visual information of images. The discrimination of this pattern
information by this manner is an important factor affecting the retrieval performance. Therefore, in future work, we will
further explore a more suitable CNN model for multi-feature fusion image retrieval.

• In addition, our method is a late-processing fusion technology that works on a given similarity score. By investigating the
area under the ranking curve as an indicator of feature validity, namely, the area of good features is small, and vice versa.
Nevertheless, this process requires significant computational overhead and memory footprint. Hence, in future work, we will
explore another point: designing an ‘early’ coding method to determine the effectiveness of features.

. Conclusions

This paper proposes an adaptive multi-feature fusion via cross-entropy normalization for effective image retrieval. On the one
and, the pre-trained deep learning network model is used to extract high-level semantic features with high feature utilization
ate to improve the performance of semantic information. On the other hand, this work adopts the cross-entropy normalization to
ptimize the complementarity of heterogeneous features. It can not only reduce the ‘high tail’ of bad features, but also balance
he relationship between the weight distribution and complementarity. And this proposal has proved that our method can achieve
uperior performance to other counterparts via extensive experiments on three public benchmark datasets.
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Appendix

𝑞 𝑞 (𝑢 ∶ 𝑣), then 𝐷(𝑆𝑞 (𝑢 ∶ 𝑣), 𝑆𝑞 (𝑢 ∶ 𝑣)) ≥ 0.
15

Theorem 1. If the distribution is 𝑆𝑇𝑖
(𝑢 ∶ 𝑣) ≠ 𝑆𝑅𝑖 𝑇𝑖 𝑅𝑖



Information Processing and Management 60 (2023) 103119W. Ma et al.
Proof. By Jensen’s inequality, we derive the objective of Eq. (1). Note that

𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) =

∑

𝑖
𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) log(

𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣)

𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣)

)

= −
∑

𝑖
𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) log(

𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣)

𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣)

)

≥ − log
∑

𝑖
(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣))(

𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣)

𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣)

)

= − log
∑

𝑖
𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣) = 0

(10)

Only if 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) = 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣), the 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) = 0. However, the curves come from different datasets then

𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) ≠ 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣), so by Eq. (1) the 𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣)) > 0. □

Theorem 2. If 𝐻(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣)) is a constant, then 𝑚𝑖𝑛[𝐷(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣))] can be equivalent to 𝑚𝑖𝑛[𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣))].

Proof. By Eq. (3),

𝑚𝑖𝑛[𝐷(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣))] ⇔ 𝑚𝑖𝑛[𝐸(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣)),

𝑆𝑞
𝑅𝑖
(𝑢 ∶ 𝑣) −𝐻(𝑆𝑞

𝑇𝑖
(𝑢 ∶ 𝑣))]

⇔ 𝑚𝑖𝑛[𝐸(𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣), 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣))]

(11)

To minimize the difference between the distribution 𝑆𝑞
𝑇𝑖
(𝑢 ∶ 𝑣) of similarity ranking and the distribution 𝑆𝑞

𝑅𝑖
(𝑢 ∶ 𝑣) of reference

curve is equivalent to minimize the relative entropy between them. □
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